Spin-ende Elektronen

Mit Spin-Elektronik auf dem Weg zu kleineren Mikrochips

| Autor / Redakteur: Sebastian Gerstl / Rainer Graefen

Spin-Elektronik: Diese Grenzschicht erlaubt den Transport von Information über den Drehimpuls von Elektronen.
Spin-Elektronik: Diese Grenzschicht erlaubt den Transport von Information über den Drehimpuls von Elektronen. (Bild: Christoph Hohmann / NIM)

Das Potential der Halbleitertechnik dürfte bald ausgeschöpft sein, da die verwendeten Bauteile nicht weiter miniaturisiert werden können. Ein Wissenschaftlerteam aus München und Kyoto hat nun demonstriert, wie statt der Ladung der Elektronen ihre Drehrichtung, ihr Spin, für den Informationstransport genutzt werden kann.

Computer und Mobilgeräte stellen Jahr für Jahr einen größeren Funktionsumfang bereit. Basis für diese Leistungssteigerungen ist eine immer weitergehende Miniaturisierung. Dieser ist jedoch eine fundamentale Grenze gesetzt, so dass eine beliebige weitere Steigerung mit konventioneller Halbleitertechnologie nicht zu erwarten ist.

Forschende in aller Welt arbeiten deshalb an Alternativen. Als besonders vielversprechend erweist sich die sogenannte Spin-Elektronik. Sie macht sich zunutze, dass Elektronen neben der Ladung auch einen Drehimpuls besitzen, den Spin. Diese Eigenschaft möchten die Fachleute nutzen, um die Informationsdichte und damit den Funktionsumfang zukünftiger Elektronik weiter zu erhöhen.

Wissenschaftler des Walther-Meißner-Institutes (WMI) und der Technischen Universität München (TUM) in Garching konnten jetzt zusammen mit Kollegen von der Kyoto Universität in Japan den Transport von Spin-Information bei Raumtemperatur in einem außergewöhnlichen Materialsystem nachweisen.

In ihren Experimenten wiesen sie die Erzeugung, den Transport und die Detektion von elektronischen Spins in der Grenzfläche zwischen den Materialien Lanthan-Aluminat (LaAlO2) und Strontium-Titanat (SrTiO3) nach. Die Besonderheit dieses Materialsystems: An der Grenzfläche zwischen den beiden nichtleitenden Materialien bildet sich eine extrem dünne, elektrisch leitfähige Schicht aus, ein sogenanntes zweidimensionales Elektronengas.

Das deutsch-japanische Team konnte nun zeigen, dass dieses zweidimensionale Elektronengas nicht nur Ladung, sondern auch Spin transportieren kann. „Dazu mussten wir zunächst einige technische Hürden überwinden“, sagt Dr. Hans Hübl, Wissenschaftler am Lehrstuhl für Technische Physik der TU München und stellvertretender Direktor des Walther-Meißner-Instituts. „Die beiden wichtigsten Fragestellungen dabei lauteten: Wie lässt sich der Spin in das zweidimensionale Elektronengas übertragen und wie lässt sich sein Transport nachweisen?“

Informationstransport durch den Spin

Der sogenannte Spin ist eine grundlegende quantenmechanische Eigenschaft von Elektronen. Er lässt sich mit einem Magnetfeld ausrichten.
Der sogenannte Spin ist eine grundlegende quantenmechanische Eigenschaft von Elektronen. Er lässt sich mit einem Magnetfeld ausrichten. (Bild: Welt der Physik)

Das Problem der Spin-Übertragung lösten die Wissenschaftler durch einen magnetischen Kontakt, dessen Elektronen durch Mikrowellenstrahlung zu einer Präzessionsbewegung gezwungen werden, analog zur Taumelbewegung eines Kreisels.

Genau wie beim Kreisel hält diese Bewegung nicht ewig an, sondern schwächt sich ab – in diesem Fall durch Abgabe von Drehmoment an das zweidimensionale Elektronengas. Dieses ist nun in der Lage, die Spin-Information zu einem nichtmagnetischen Kontakt zu transportieren, der sich einen Mikrometer neben dem magnetischen Kontakt befindet.

Der nichtmagnetische Kontakt detektiert den Spin-Transport indem er die Spins absorbiert und dabei eine elektrische Spannung aufbaut. Durch Messung dieser Spannung konnten die Forscher den Spin-Transport systematisch untersuchen und nachweisen, dass er in derartigen Strukturen über Entfernungen bis zum hundertfachen Abstand heutiger Transistoren wirksam ist.

Basierend auf diesen Ergebnissen will das Wissenschaftler-Team nun erforschen, inwieweit sich mit diesem Materialsystem spin-elektronische Bauelemente mit neuartigen Funktionalitäten realisieren lassen.

Das Forschungsprojekt wurde durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM) finanziell gefördert.

Die Wissenschaftler haben die Ergebnisse Ihrer Studie in der aktuellen Ausgabe des Fachjournals Nature publiziert.

* Diesen Beitrag haben wir von unserem Partnerportal Elektronik Praxis übernommen.

Kommentare werden geladen....

Was meinen Sie zu diesem Thema?

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44533094 / Forschung u. Wissenschaft)