Suchen

Lichtwellenelektronik 100.000 Mal schneller als die Elektronik von heute

| Autor / Redakteur: Dr. Anna-Lena Idzko / Rainer Graefen

Ein internationales Forscherteam hat die Wechselwirkung von Licht und Glas so optimiert, dass man sie für eine künftige, lichtwellengesteuerte Elektronik einsetzen könnte.

Firma zum Thema

Ein Team im Labor für Attosekundenphysik (LAP) des Max-Planck Instituts für Quantenoptik (MPQ), der Ludwig-Maximilians Universität München (LMU), der Technischen Universität München (TUM) und der Universität Tsukuba (Japan) hat die Wechselwirkung von Licht und Glas so optimiert, dass man sie für eine künftige, lichtwellengesteuerte Elektronik einsetzen könnte. Das Bild zeigt Erstautorin Dr. Annkatrin Sommer (MPQ) mit einer Glas-Probe.
Ein Team im Labor für Attosekundenphysik (LAP) des Max-Planck Instituts für Quantenoptik (MPQ), der Ludwig-Maximilians Universität München (LMU), der Technischen Universität München (TUM) und der Universität Tsukuba (Japan) hat die Wechselwirkung von Licht und Glas so optimiert, dass man sie für eine künftige, lichtwellengesteuerte Elektronik einsetzen könnte. Das Bild zeigt Erstautorin Dr. Annkatrin Sommer (MPQ) mit einer Glas-Probe.
(Bild: Bild: Thorsten Naeser / MPQ)

Elektronenbewegungen sind die Basis unserer Elektronik. Über sie werden Informationen gespeichert, bearbeitet und weitergeleitet. Doch die heutige Elektronik scheint bei einigen Milliarden Schaltungszyklen pro Sekunde ihre höchstmögliche Geschwindigkeit erreicht zu haben, begrenzt durch die Wärme, die beim Ein- und Ausschalten des Stromes entsteht und den Schaltkreis aufheizt.

Bildergalerie

Die elektromagnetischen Wellen des Lichts schwingen mit Petahertz-Frequenzen (in einer milliardstel Sekunde rund eine Million Mal) - so schnell könnte theoretisch auch die künftige Elektronik werden.

Ein Team im Labor für Attosekundenphysik (LAP) des Max-Planck Instituts für Quantenoptik (MPQ), der Ludwig-Maximilians Universität München (LMU), der Technischen Universität München (TUM) und der Universität Tsukuba (Japan) hat die Wechselwirkung von Licht und Glas so optimiert, dass man sie für eine künftige, lichtwellengesteuerte Elektronik einsetzen könnte.

Das elektrische Feld von Licht, das seine Richtung in einer Sekunde Trillionen Mal ändert, kann Elektronen ebenso schnell in einem Festkörper hin- und hertreiben und könnte damit den Weg zum elektronischen Schalter der Zukunft ebnen. Voraussetzung ist allerdings, die Elektronenbewegungen und deren Konsequenzen für die Wärmeentwicklung genau zu kennen.

Physiker vom Labor für Attosekundenphysik haben bereits herausgefunden, dass es möglich ist Elektronen mit Frequenzen von Licht zu steuern. In einem Folgeexperiment ließen die Forscher nun extrem starke, wenige Femtosekunden-lange Laserpulse auf Siliziumoxid treffen.

Eine einzige Schwingung

Eine gelbe Lichtwelle (von links kommend) erfasst Atome in Siliziumoxid. Deren Elektronen (blau-rot) kommen ins Schwingen, nehmen also die Energie des Lichts auf. Am Ende des Zyklus haben sie die zusätzliche Energie wieder abgegeben. Die Messung des zeitlichen Ablaufs des Lichtfeldes nach dessen Durchlauf durch das Silizium gewährt erstmals direkte Einblicke in die Attosekunden-schnelle Elektronenbewegungen, die Licht in einem Festkörper verursacht.
Eine gelbe Lichtwelle (von links kommend) erfasst Atome in Siliziumoxid. Deren Elektronen (blau-rot) kommen ins Schwingen, nehmen also die Energie des Lichts auf. Am Ende des Zyklus haben sie die zusätzliche Energie wieder abgegeben. Die Messung des zeitlichen Ablaufs des Lichtfeldes nach dessen Durchlauf durch das Silizium gewährt erstmals direkte Einblicke in die Attosekunden-schnelle Elektronenbewegungen, die Licht in einem Festkörper verursacht.
(Bild: Grafik: Christian Hackenberger / MPQ)

Das Lichtfeld führte dabei nur eine einzige starke Schwingung aus, also je einen großen "Ausschlag" der Kraft, die dabei auf die Elektronen einwirkt, nach links und rechts. Die präzise Messung des zeitlichen Ablaufs des Lichtfeldes nach dessen Durchlauf durch die dünne Glasscheibe gewährt nun erstmals direkte Einblicke in die Attosekunden-schnelle Elektronenbewegungen, die Licht in einem Festkörper verursacht.

Mit ihrer neuen Messtechnik beobachteten die Wissenschaftler, dass die Elektronen geringfügig, um einige zehn Attosekunden, zeitversetzt auf das einfallende Lichtfeld reagierten. Diese zeitversetzte Reaktion bestimmt den Energietransfer zwischen Licht und Materie.

Die Messung dieses Energie-Austausches innerhalb von einem Lichtzyklus erlaubt erstmals die Optimierung von Licht-Materie-Wechselwirkungen für die ultimativ schnelle Signalverarbeitung. Je besser der reversible Austausch und je kleiner die Energie ist, die nach dem Schaltvorgang im Medium zurückgelassen wird, umso besser stehen die Chancen, die Wechselwirkung für künftige, lichtfeldgesteuerte integrierte Elektronik zu nutzen.

Kühle Beziehung zwischen Glas und Licht

Um die beobachteten Phänomene besser zu verstehen und die bestmöglichen Parameter zu identifizieren, halfen Wissenschaftler des Center for Computational Sciences der Universität Tsukuba mit neu entwickelten Simulationsmethoden. Die Theoretiker nutzen dafür die Rechenleistung des K-Computers, dem derzeit viertschnellsten Superrechner der Welt. Mit ihm gelang es, die Elektronenbewegungen im Festkörper mit bisher unerreichter Genauigkeit zu berechnen.

Durch die Kontrolle der Stärke des Lichtfeldes gelang es den Forschern in Garching, diesen Energie-Austausch tatsächlich in diese Richtung zu optimieren. Bei bestimmten Feldstärken nahm der Festkörper erhebliche Energie in der ersten Hälfte des Lichtpulses auf, die er in der zweiten Hälfte des Pulses beinahe vollständig dem Lichtfeld zurückgab.

Diese Erkenntnis liefert den wichtigen Hinweis, dass ein potentielles Schaltmedium für zukünftige lichtgesteuerte Elektronik nicht überhitzt. Die etwas "kühle" Beziehung zwischen Glas und Licht eröffnet so möglicherweise den Weg zu einer dramatischen Beschleunigung der elektronischen Signal- und Datenverarbeitung.

Originalveröffentlichung: A. Sommer et al.: "Attosecond nonlinear polarization and light-matter energy transfer in solids", Nature; DOI: 10.1038/nature17650

(ID:44092226)