Suchen

Eine gemeinsame Studie von Forschern der Rice University und des KIT zum Tunnelbau in Nanostrukturen Nanoteilchen graben kleinste Tunnel der Welt

Autor / Redakteur: Maya Lukas, Velimir Meded u. a. / Rainer Graefen

Löcher in Nanostrukturen zu bohren bzw. katalysieren zu lassen, hört sich nach einer Idee für das Guiness Buch der Rekorde an. Sinn ergibt sich spätestens dann, wenn man über poröse Strukturen nachdenkt.

Firmen zum Thema

Graphit besteht aus in Schichten angeordneten Kohlenstoffatomen. Vom Rand dieser Schichten aus gräbt sich ein Metallpartikel in die Graphitprobe.
Graphit besteht aus in Schichten angeordneten Kohlenstoffatomen. Vom Rand dieser Schichten aus gräbt sich ein Metallpartikel in die Graphitprobe.
(Grafik: KIT/CFN)

Einige Nanometer breit sind die kleinsten Tunnel der Welt. Forscher des Karlsruher Instituts für Technologie (KIT) und der US-amerikanischen Rice University haben die Tunnel in einer Probe Graphit angelegt.

Damit wird es nun möglich, auch das Innere von Werkstoffen mittels Selbstorganisation im Nanometerbereich zu strukturieren und nanoporösen Graphit für Anwendungen in Medizin und Batterietechnik maßzuschneidern.

Tunnelbau mit Katalysatoren

Für die Herstellung der Tunnel bringen die Forscher Nanopartikel aus Nickel auf Graphit auf, der dann in Anwesenheit von Wasserstoffgas erhitzt wird. Die Oberfläche der wenige Nanometer großen Metallpartikel dient als Katalysator, der die Kohlenstoffatome des Graphits ablöst und mit Wasserstoff zum Gas Methan umbildet.

Das Nickelpartikel wird durch Kapillarkräfte in das entstandene „Loch“ gezogen und bohrt sich weiter durch das Material. In den vorliegenden Versuchen ergaben sich Tunnel zwischen 1 und 50 Nanometer, was circa einem Tausendstel eines Haares entspricht. Für den stichhaltigen Nachweis der Tunnel nutzten die Forscher Aufnahmen mit Rasterelektronen- und Rastertunnelmikroskopen.

Sind da wirklich Tunnel?

„Eigentlich bilden Mikroskope nur die oberen Schichten der Probe ab“, erklären die beiden Hauptautoren der Studie, Maya Lukas und Velimir Meded vom Institut für Nanotechnologie am KIT. „Dennoch hinterlassen die darunter laufenden Tunnel auch atomare Strukturen auf der Oberfläche. Mittels der detailreichen Rastertunnelmikroskopbilder und Computersimulationen konnten wir diese eindeutig den Nanotunneln zuordnen und deren Verlauf bestimmen.“ Ergänzend konnte mit einer Serie von Aufnahmen eines Rasterelektronenmikroskopes aus verschiedenen Perspektiven die Tiefe der Tunnel exakt bestimmt werden.

Ausblick

Poröser Graphit wird beispielsweise in den Elektroden von Lithium-Ionen-Batterien genutzt. Die richtige Porengröße des Materials könnte die Ladezeit verkürzen. In der Medizin könnte poröses Graphit als Träger von Medikamenten dienen, die gezielt über einen längeren Zeitraum abgegeben werden.

Nutzt man statt Graphit Materialen, die nicht leitend sind, aber einen ähnlichen atomaren Aufbau haben, etwa Bornitrid, wäre es auch denkbar, die Tunnel als Grundgerüst für nanoelektronische Komponenten zu nutzen, etwa neuartige Sensoren oder Solarzellen.

(ID:38404160)