Kollisionsexperimente in Halbleitern

Revolutionärer Teilchenbeschleuniger entwickelt

| Autor / Redakteur: Sebastian Gerstl / Rainer Graefen

Ein Elektron (blau) und ein Loch (rot) prallen in einem Wolframdiselenid-Kristall (Gitter) zusammen. Die dabei freiwerdende Energie entlädt sich in hochenergetischen Photonen (bunter Lichtstrahl).
Ein Elektron (blau) und ein Loch (rot) prallen in einem Wolframdiselenid-Kristall (Gitter) zusammen. Die dabei freiwerdende Energie entlädt sich in hochenergetischen Photonen (bunter Lichtstrahl). (Bild: Fabian Langer / Universität Regensburg)

Unser Standardmodell der Elementarteilchen basiert auf Erkenntnissen, die mit Hilfe von Teilchenbeschleunigern und Kollisionsexperimenten gesammelt wurden. Ein Forscherteam der Universitäten in Regensburg, Marburg und Santa Barbara (USA) hat nun einen neuen Beschleuniger für Teilchen in Festkörpern entwickelt.

Schon kleine Kinder werfen unterschiedliche Dinge auf- und gegeneinander, um so etwas über die Eigenschaften der Gegenstände zu lernen. Teilchenbeschleuniger nutzen diese Herangehensweise zur kontrollierten Untersuchung der kleinsten Bausteine der uns umgebenden Materie.

So beschoss der neuseeländische Physiker Ernest Rutherford bereits Anfang des 20. Jahrhunderts Goldfolien mit Alpha-Teilchen. Aufgrund der Streueigenschaften der Alpha-Strahlung schloss er auf die Struktur des Streuzentrums und fand heraus, dass sich die Masse eines Atoms auf einen kleinen Raum – den Atomkern – konzentriert.

Quasi-Teilchenkollision

Etwa 100 Jahre später kollidieren im Rahmen des bislang größten Experiments der modernen Wissenschaft am Kernforschungszentrum CERN hochenergetische Protonen miteinander, was schließlich zur Entdeckung des sagenumwobenen Higgs-Teilchens geführt hat.

Aufgrund der enormen Teilchenanzahl waren bislang allerdings Verfahren und Methoden zur Nutzung solcher Kollisionsexperimente für die Festkörperphysik unbekannt, obwohl unsere modernen Technologien wesentlich davon abhängen, die strukturellen und elektronischen Eigenschaften von Festkörpern zu verstehen. Gleichwohl kann in einem Festkörper die komplexe Wechselwirkung von Billionen über Billionen von Teilchen auf einzelne Objekte reduziert werden, sogenannte Quasiteilchen.

Einem Team von Physikern um Prof. Dr. Rupert Huber (Universität Regensburg) und Prof. Dr. Mackillo Kira (Philipps-Universität Marburg) ist es nun in Kooperation mit Kollegen aus dem kalifornischen Santa Barbara gelungen, solche Quasiteilchen gezielt miteinander zu kollidieren.

Dazu mussten die Forscher extrem schnell vorgehen, denn die Quasiteilchen existieren nur für einen winzigen Augenblick, etwa 10 Femtosekunden lang (1 Femtosekunde ist der millionste Teil einer Milliardstel Sekunde), ehe sie durch Stöße mit umliegenden Elektronen unkontrolliert gestört werden und zerfallen.

Rätsel der Supraleitung verstehbar?

Dieses Problem umgingen die Forscher mit Hilfe der Terahertz-Hochfeldquelle an der Universität Regensburg. Zunächst erzeugten die Forscher Paare von Quasiteilchen, sogenannte Elektron-Lochpaare, im Halbleiter Wolframdiselenid mit Hilfe eines superkurzen Lichtblitzes.

Die gegensätzlich geladenen Quasiteilchen ziehen einander elektrostatisch an und bilden einen atomähnlichen Komplex, den man als Exziton bezeichnet. Das starke, schwingende Lichtfeld aus der Terahertz-Hochfeldquelle trennt die beiden Quasiteilchen zunächst voneinander, um sie anschließend mit hoher Geschwindigkeit wieder miteinander zu kollidieren.

Der gesamte Beschleunigungsprozess läuft dabei schneller als eine einzige Lichtschwingung ab. Die Kollisionen führen zu ultrakurzen Lichtblitzen, die wiederum – ähnlich wie in Großforschungsanlagen wie dem CERN – Rückschlüsse auf die Struktur der Quasiteilchen zulassen. Diese Beobachtungen wurden durch quantenmechanische Simulationen der Arbeitsgruppe an der Philipps-Universität Marburg unterstützt.

Die Experimente und Berechnungen der Forscher aus Regensburg, Marburg und Santa Barbara belegen, dass grundlegende Beschleunigerkonzepte aus der Teilchenphysik ebenso für Verfahren in der Festkörperphysik genutzt werden können.

Die Experimente bieten neuartige Einblicke in die Eigenschaften von Quasiteilchen und könnten wesentlich zur Lösung einiger der größten Rätsel der modernen Physik wie etwa den Mechanismus der Hochtemperatursupraleitung beitragen.

Kommentare werden geladen....

Was meinen Sie zu diesem Thema?

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44064618 / Forschung u. Wissenschaft)