Aus der Graphenforschung

Zweidimensionale Materialien verhalten sich wie die Oberfläche eines Sees

| Autor / Redakteur: Katharina Juschkat / Rainer Graefen

„Die Elektronen folgen im Innern der Materialien den Gesetzen der Relativitätstheorie, was in konventionellen Materialien grundsätzlich nicht der Fall ist. Hier liegen interessante Vorteile für elektronische Bauelemente, die sich aus zweidimensionalen Materialien herstellen lassen“, erklärt Prof. Dr. Uwe Hartmann.
„Die Elektronen folgen im Innern der Materialien den Gesetzen der Relativitätstheorie, was in konventionellen Materialien grundsätzlich nicht der Fall ist. Hier liegen interessante Vorteile für elektronische Bauelemente, die sich aus zweidimensionalen Materialien herstellen lassen“, erklärt Prof. Dr. Uwe Hartmann. (Bild: dasbilderwerk)

Für die Entdeckung von zweidimensionalen Materialien haben die Forscher André Geim und Konstantin Novoselov 2010 den Physiknobelpreis erhalten. Jetzt konnten erstmals die besonderen mechanischen Eigenschaften wie extreme Stabilität experimentell nachgewiesen werden.

Bisher bekannte Materialien waren immer dreidimensional aufgebaut – bis vor wenigen Jahren zweidimensionale Materialien entdeckt wurde. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den Physik-Nobelpreis für die Erforschung des Graphens, einer zweidimensionalen Modifikation des reinen Kohlenstoffs. „Das Besondere an diesen Materialien ist, dass sie nur eine Atomlage dick sind, also praktisch nur aus Oberfläche bestehen“, erklärt Professor Uwe Hartmann, Experimentalphysiker an der Universität des Saarlandes. Dadurch besitzen sie ganz und gar andere physikalische Eigenschaften als ihre herkömmlichen dreidimensionalen Verwandten. Erstmals ist es jetzt gelungen, die mechanischen Eigenschaften solcher Materialien zu charakterisieren.

Einzigartige Eigenschaften entdeckt

„Die elektronischen Eigenschaften einiger Konfigurationen sind spektakulär: Die Elektronen folgen im Innern der Materialien den Gesetzen der Relativitätstheorie, was in konventionellen Materialien grundsätzlich nicht der Fall ist. Hier liegen interessante Vorteile für elektronische Bauelemente, die sich aus zweidimensionalen Materialien herstellen lassen“, erläutert Hartmann. Auch die mechanischen Eigenschaften sind einzigartig. „Einige Materialkonfigurationen zeigen eine Stabilität, die – bezogen auf ihre Dicke – weitaus größer ist als die der stabilsten dreidimensionalen Materialien“, sagt er.

Die meisten Informationen über die Eigenschaften der neuen Materialien stammen heute aus Simulationsrechnungen. „Die zweidimensionalen Materialien lassen sich bislang nur als dünne Filme auf der Oberfläche dreidimensionaler Materialien handhaben. Damit werden aber die Eigenschaften des Gesamtsystems zwangsläufig durch das dreidimensionale Material bestimmt“, erklärt der Experimentalphysiker. An seinem Lehrstuhl für Nanostrukturforschung ist es in Kooperation mit dem Leibniz-Institut für Neue Materialien nun gelungen, die mechanischen Eigenschaften atomar dünner Kohlenstoff-Modifikationen in Form freitragender Membranen direkt zu vermessen.

„Hierdurch können wir Daten aus Simulationsrechnungen direkt mit experimentellen Befunden vergleichen“, sagt Hartmann. Die Wissenschaftler versprechen sich mit den zweidimensionalen Materialien in vielen Bereichen Innovationen – von Sensorik und Aktorik bis hin zu Filtertechnik und Brennstoffzellen: Daher sind die Ergebnisse und Verfahren der Saarbrücker Forscher für viele Forschungsfelder von Interesse.

Einzelne Atome durch Tunnelstrom sichtbar machen

Die Wissenschaftler benutzten Graphen-Monolagen auf einem Substrat, das eine regelmäßige Anordnung von Löchern aufwies. „Die Löcher hatten einen Durchmesser von etwa einem Mikrometer. Mithilfe eines Rastertunnelmikroskops konnten wir die freitragenden Membranen über den Löchern mit atomarer Präzision analysieren“, erklärt er.

„Bei Anlegen einer elektrischen Spannung zwischen der spitzenförmigen Sonde des Rastertunnelmikroskops und dem atomar dünnen Graphen-Film fließt ein elektrischer Strom“, erklärt Hartmann weiter. Dieser sogenannte Tunnelstrom hängt empfindlich ab vom Abstand zwischen Sonde und Probe und von der Elektronenverteilung im Graphen-Film. „Dies nutzen wir, um die einzelnen Atome sichtbar zu machen: Der Tunnelstrom variiert, während die Sonde rasterförmig über das Material geführt wird.“

Die Wissenschaftler nutzen noch einen weiteren Effekt: Durch die zwischen Sonde und Probe angelegte elektrische Spannung wird eine Kraft auf die freitragende Graphen-Membran ausgeübt und sie beginnt sich durchzuwölben. „Wir konnten durch Aufnahme von Spannungs-Dehnungs-Diagrammen insbesondere die vermuteten außerordentlichen mechanischen Eigenschaften direkt nachweisen, obwohl die dabei aufgewendeten Kräfte mit einem Milliardstel Newton im Vergleich zu konventionellen Messungen ungeheuer klein waren“, erklärt der Experimentalphysiker. Die Forscher zeigten auch, „dass freitragende Membranen sich nicht wie die Membran einer Pauke in Ruhe befinden, wenn man auf sie nicht einwirkt, sondern vielmehr der Oberfläche eines Sees ähneln: Sie weisen die verschiedensten Wellenbewegungen auf und spiegeln jede äußere Störung in Form neuer angeregter Wellen wider“.

* Diesen Beitrag haben wir von unserem Partnerportal Elektrotechnik übernommen.

Kommentare werden geladen....

Was meinen Sie zu diesem Thema?

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 45106803 / Forschung u. Wissenschaft)