Mehr Kapazität auf kleinerer Fläche

Datenspeicherung mit einzelnen Molekülen

| Redakteur: Tina Billo

Graphische Animation eines möglichen Datenspeichers auf der atomaren Skala: Ein Datenspeicherelement – bestehend aus nur 6 Xenon-Atomen – wird durch einen Spannungspuls verflüssigt.
Graphische Animation eines möglichen Datenspeichers auf der atomaren Skala: Ein Datenspeicherelement – bestehend aus nur 6 Xenon-Atomen – wird durch einen Spannungspuls verflüssigt. (Bild: Departement Physik, Universität Basel)

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Größe. Dies könnte für die Entwicklung neuer Speichermedien von Bedeutung sein.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast allen Medien wird zur Speicherung ein Phasenübergang genutzt. So etwa wird für die Herstellung von CDs eine sehr dünne Metallschicht in Kunststoffen verwendet, die innerhalb von Mikrosekunden aufschmilzt, um dann wieder zu erstarren. Dies auf der Ebene von Atomen oder Molekülen zu ermöglichen, ist Gegenstand eines Forschungsprojekts unter Leitung der Universität Basel.

Phasenwechsel einzelner Atome zur Datenspeicherung

Ein Phasenwechsel auf Ebene einzelner Atome oder Moleküle kann prinzipiell zur Speicherung von Daten genutzt werden und in der Forschung gibt es derartige Speicher bereits. Sie sind allerdings aufwendig und teuer herzustellen. Die Gruppe um Professor Thomas Jung von der Universität Basel hat das Ziel, solch winzige Speichereinheiten aus wenigen Atomen durch Selbstorganisation herzustellen und damit den Herstellungsprozess enorm zu vereinfachen.

Die Gruppe hat dazu zunächst ein sogenanntes metallorganisches Netzwerk hergestellt, das wie ein Sieb mit präzise definierten Poren aussieht. Wenn die richtigen Verbindungen und Bedingungen gewählt werden, ordnen sich die Moleküle dabei selbstständig zu einer regelmäßigen supramolekularen Struktur an.

Xenon-Atome: mal fest, mal flüssig

Die Physikerin Aisha Ahsan, Erstautorin der aktuellen Studie, hat nun einzelne Xenon-Gasatome in die etwas über einen Nanometer großen Poren des Netzwerks eingebracht. Durch Temperaturveränderungen und durch lokal angelegte elektrische Pulse gelang es ihr, den Aggregatzustand der Xenon-Atome zwischen fest und flüssig gezielt hin und her zu schalten. Sie konnte diesen Phasenübergang durch Temperaturänderung in allen Poren gleichzeitig bewirken.

Die Temperaturen für den Phasenübergang hängen von der Stabilität der Xenon-Cluster ab, die je nach Anzahl der Xenon-Atome unterschiedlich ist. Mit dem Mikroskopsensor lässt sich der Phasenübergang auch lokal in einer einzelnen Pore auslösen.

Versuche mit supramolekularen Netzwerken

Da diese Experimente bei sehr tiefen Temperaturen von wenigen Kelvin durchgeführt werden müssen (unter -260° C), wird sich mit Xenon-Atomen selbst kein neuer Datenspeicher realisieren lassen. Die Versuche haben aber belegt, dass sich supramolekulare Netzwerke prinzipiell eignen, um winzige Strukturen herzustellen, in denen mit wenigen Atomen oder Molekülen gezielt Phasenübergänge induziert werden können.

"Wir werden nun größere Moleküle wie kurze Alkohole testen, da diese Aggregatszustandsänderungen bei höheren Temperaturen durchlaufen und daher eine Anwendung gut denkbar ist", bemerkt Professor Thomas Jung, der die Arbeiten betreut hat.

Originalveröffentlichung

Aisha Ahsan, S. Fatemeh Mousavi, Thomas Nijs, Sylwia Nowakowska, Olha Popova, Aneliia Wäckerlin, Jonas Björk, Lutz H. Gade, Thomas A. Jung:

"Phase transitions in confinements: Controlling solid to Fluid transitions of xenon atoms in an on-surface network", Small (2018).

Die Studie ist in Zusammenarbeit des Swiss Nanoscience Instituts (SNI), des Departements Physik der Universität Basel und des Paul Scherrer Instituts (PSI) mit den Universitäten Heidelberg und Linköping entstanden.

Kommentare werden geladen....

Was meinen Sie zu diesem Thema?

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 45664908 / Forschung u. Wissenschaft)